يعرض 1 - 10 نتائج من 28 نتيجة بحث عن '"ALVIS ZAKZUK, NELSON RAFAEL"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Revista mexicana de ciencias políticas y sociales, ISSN 0185-1918, null 69, Nº. 250, 2024 (Ejemplar dedicado a: Perspectivas multidisciplinarias de contextos de violencia: instituciones, movimientos sociales y políticas públicas)

    وصف الملف: application/pdf

    العلاقة: https://dialnet.unirioja.es/servlet/oaiart?codigo=9359722Test; (Revista) ISSN 2448-492X; (Revista) ISSN 0185-1918

  3. 3
    دورية أكاديمية

    جغرافية الموضوع: Colombia

    وصف الملف: 11 Páginas; application/pdf

    العلاقة: Public Health Nutrition; 1. World Health Organization (2011) Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Geneva, Switzerland: World Health Organization.; 2. World Health Organization (2020) WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Geneva: World Health Organization.; 3. Figueiredo ACMG, Gomes-Filho IS, Batista JET et al. (2019) Maternal anemia and birth weight: a prospective cohort study. PLoS One 14, e0212817.; 4. Yi SW, Han YJ & Ohrr H (2013) Anemia before pregnancy and risk of preterm birth, low birth weight and small-forgestational-age birth in Korean women. Eur J Clin Nutr 67, 337–342.; 5. Malhotra M, Sharma JB, Batra S et al. (2002) Maternal and perinatal outcome in varying degrees of anemia. Int J Gynecol Obstet 79, 93–100.; 6. Col Madendag I, Eraslan Sahin M, Madendag Y et al. (2019) The effect of iron deficiency anemia early in the third trimester on small for gestational age and birth weight: a retrospective cohort study on iron deficiency anemia and fetal weight. Biomed Res Int 2019, 7613868.; 7. Suitor CW (1991) Perspectives on nutrition during pregnancy: part I, weight gain; part II, nutrient supplements. J Am Diet Assoc 91, 96–98.; 8. Friedrisch JR & Friedrisch BK (2017) Prophylactic iron supplementation in pregnancy: a controversial issue. Biochem Insights 10, 117862641773773.; 9. Fisher AL & Nemeth E (2017) Iron homeostasis during pregnancy. Am J Clin Nutr 106, 1567S–1574S.; 11. Ng SW, Norwitz SG & Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20, 3283.; 12. Ziaei S, Norrozi M, Faghihzadeh S et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin ≥ 13.2 g/dl. BJOG 114, 684–688.; 13. Shastri L, Mishra PE, Dwarkanath P et al. (2015) Association of oral iron supplementation with birth outcomes in nonanaemic South Indian pregnant women. Eur J Clin Nutr 69, 609–613.; 14. Dewey KG & Oaks BM (2017) U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr 106, 1694S–1702S.; 15. World Health Organization (2012) Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva, Switzerland: World Health Organization.; 16. Gonzales GF, Olavegoya P, Gonzales GF et al. (2019) Pathophysiology of anemia in pregnancy: anemia or hemodilution ? Rev Peru Ginecol Obstet 65, 489–502.; 17. Taipe-Ruiz BR (2019) Anemia en el primer control de gestantes en un centro de salud de Lima, Perú y su relación con el estado nutricional pregestacional (Anemia at the first prenatal visit in a health center in Lima, Peru, and its relationship with the pregestational nutrit). Horiz Med (Barcelona) 19, 6–11.; 18. Forero Y, Galindo M, Hernández J et al. (2015) National Survey of Nutritional Situation ENSIN 2015. Politic note [Internet]. General document of analysis National Survey of the Nutritional Situation in Colombia – ENSIN 2015. ENSIN 2015. https://www.icbf.gov.co/bienestar/nutricion/encuestanacional-situacion-nutricional#ensin3Test (accessed January 2021).; 19. World Health Organization (2020) WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. https://apps.who.int/iris/handle/10665/331505Test (accessed January 2021).; 20. Ministerio de Salud y Protecci ´on Social (2015) Lines of action for the prevention and control of micronutrient deficiencies. National Strategy for the Prevention and Control of Micronutrient Deficiencies in Colombia 2014–2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficienciamicronutrientes.pdfTest (accessed January 2021).; 21. Oaks BM, Jorgensen JM, Baldiviez LM et al. (2019) Prenatal iron deficiency and replete iron status are associated with adverse birth outcomes, but associations differ in Ghana and Malawi. J Nutr 149, 513–521.; 22. Hwang JY, Lee JY, Kim KN et al. (2013) Maternal iron intake at mid-pregnancy is associated with reduced fetal growth: results from Mothers and Children’s Environmental Health (MOCEH) study. Nutr J 12, 1–7.; 23. DANE (2015) Urban socioeconomic stratification methodology for home public services. Conceptual approach. https://www.dane.gov.co/files/geoestadistica/estratificacion/EnfoqueConceptual.pdfTest (accessed January 2021).; 24. Cunningham GF, Leveno KJ, Bloom SL et al. (editors) (2018) Labor. In Williams Obstetrics, 25e, p. 424. New York, USA: McGraw-Hill Education/Medical.; 25. World Health Organization (2001) Iron deficiency anaemia. Assessment, prevention and control. WHO/NHD/01.3. https://doi.org/10.7748/ns2013.02.27.23.59.p10441Test.; 26. WHO (2009) WHO Child Growth Standards: Head Circumference-for-age, Arm Circumference-for-age, Triceps Skin Fold-for-age and Sub Scapular Skin Fold-forage. Geneva, Switzerland: WHO.; 27. WHO (2014) Global Nutrition Targets 2025: Low Birth Weight Policy Brief (No. WHO/NMH/NHD/14.5). Geneve, Switzerland: World Health Organization.; 28. World Health Organization (2012) Born Too Soon. The Global Action Report on Preterm Birth. Geneva, Switzerland: World Health Organization.; 29. Villar J, Ismail LC, Victora CG et al. (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn CrossSectional Study of the INTERGROWTH-21st Project. Lancet 384, 857–868.; 30. Mikolajczyk RT, Zhang J, Betran AP et al. (2011) A global reference for fetal-weight and birthweight percentiles. Lancet 377, 1855–1861.; 31. Wei T, Simko V, Levy M et al. (2017) Package ‘corrplot’. Statistician 56, 316–324.; 32. Fl ´orez-Tanus Á, Alvis-Guzmán N, Caraballo L et al. (2018) Health care costs and resource utilization for different asthma severity stages in Colombia: a claims data analysis. World Allergy Organ J 11, D26.; 33. Mahamoud NK, Mwambi B, Oyet C et al. (2020) Prevalence of anemia and its associated socio-demographic factors among pregnant women attending an antenatal care clinic at Kisugu Health Center IV, Makindye Division, Kampala, Uganda. J Blood Med 11, 13–18.; 34. Okia CC, Aine B, Kiiza R et al. (2019) Prevalence, morphological classification, and factors associated with anemia among pregnant women accessing antenatal clinic at Itojo Hospital, South Western Uganda. J Blood Med 10, 351–357.; 35. Rahman MM, Abe SK, Rahman MS et al. (2016) Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis, 2. Am J Clin Nutr 103, 495–504.; 36. Mohamed MA, Ahmad T, MacRi C et al. (2012) Racial disparities in maternal hemoglobin concentrations and pregnancy outcomes. J Perinat Med 40, 141–149.; 37. Zhang Q, Ananth CV, Rhoads GG et al. (2009) The impact of maternal anemia on perinatal mortality: a population-based, prospective cohort study in China. Ann Epidemiol 19, 793–799.; 38. Meng Lu Z, Goldenberg RL, Cliver S et al. (1991) The relationship between maternal hematocrit and pregnancy outcomes. Obstet Gynecol 77, 190–194.; 39. Chang S-C, O’Brien KO, Nathanson MS et al. (2003) Hemoglobin concentrations influence birth outcomes in pregnant African-American adolescents. J Nutr 133, 2348–2355.; 40. Maghsoudlou S, Cnattingius S, Stephansson O et al. (2016) Maternal haemoglobin concentrations before and during pregnancy and stillbirth risk: a population-based casecontrol study. BMC Pregnancy Childbirth 16, 1–8.; 41. Xiong X, Buekens P, Alexander S et al. (2000) Anemia during pregnancy and birth outcome: a meta-analysis. Am J Perinatol 17, 137–146.; 42. Fowkes FJI, Moore KA, Opi DH et al. (2018) Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study. BMC Med 16, 156.; 43. Symington EA, Baumgartner J, Malan L et al. (2019) Maternal iron-deficiency is associated with premature birth and higher birth weight despite routine antenatal iron supplementation in an urban South African setting: the NuPED prospective study. PLoS One 14, e0221299.; 44. Yuan X, Hu H, Zhang M et al. (2019) Iron deficiency in late pregnancy and its associations with birth outcomes in Chinese pregnant women: a retrospective cohort study. Nutr Metab 16, 1–11.; 45. Hsu WY, Wu CH, Hsieh CTC et al. (2013) Low body weight gain, low white blood cell count and high serum ferritin as markers of poor nutrition and increased risk for preterm delivery. Asia Pac J Clin Nutr 22, 90–99.; 46. Chu FC, Shaw SW, Lo LM et al. (2020) Association between maternal anemia at admission for delivery and adverse perinatal outcomes. J Chin Med Assoc 83, 402–407.; 47. Lao TT (2000) Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod 15, 1843–1848.; 48. De Haas S, Ghossein-Doha C, Van Kuijk SMJ et al. (2017) Physiological adaptation of maternal plasma volumen during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 49, 177–187.; 49. Gernand AD, Christian P, Schulze KJ et al. (2012) Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh. J Nutr 142, 1109–1115.; 50. Ng S-W, Norwitz SG & Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20, 3283.; 51. Ziaei S, Norrozi M, Faghihzadeh S et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin ≥ 13.2 g/dl. BJOG 114, 684–688.; 52. Casanueva E & Viteri FE (2003) Iron and oxidative stress in pregnancy. J Nutr 133, 1700S–1708S.; 53. Mannaerts D, Faes E, Cos P et al. (2018) Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One 13, 1–14.; 54. Stangret A, Wnuk A, Szewczyk G et al. (2017) Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis. J Matern Neonatal Med 30, 199–204.; 55. Valappil SA, Varkey M, Areeckal B et al. (2015) Serum ferritin as a marker for preterm premature rupture of membranes – a study from a tertiary centre in central Kerala. J Clin Diagn Res 9, BC09–BC12.; 56. Rayman MP, Barlis J, Evans RW et al. (2002) Abnormal iron parameters in the pregnancy syndrome preeclampsia. Am J Obstet Gynecol 187, 412–418.; 57. Rawal S, Hinkle SN, Bao W et al. (2017) A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia 60, 249–257.; 58. Soheilykhah S, Mojibian M & Moghadam MJ (2017) Serum ferritin concentration in early pregnancy and risk of subsequent development of gestational diabetes: a prospective study. Int J Reprod Biomed 15, 155–160.; 59. Martins R, Maier J, Gorki AD et al. (2016) Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol 17, 1361–1372.; 60. Arezes J, Foy N, McHugh K et al. (2018) Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477.; 61. Drakesmith H & Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338, 768–772.; 62. Jaeggi T, Kortman GAM, Moretti D et al. (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64, 731–742.; 63. Ziaei S, Janghorban R, Shariatdoust S et al. (2008) The effects of iron supplementation on serum copper and zinc levels in pregnant women with high-normal hemoglobin. Int J Gynecol Obstet 100, 133–135.; 64. Pathak P & Kapil U (2004) Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr 71, 1003–1005.; 65. Ikeanyi EM & Ibrahim AI (2015) Does antenatal care attendance prevent anemia in pregnancy at term? Niger J Clin Pract 18, 323–327.; 66. Zhou H, Wang A, Huang X et al. (2019) Quality antenatal care protects against low birth weight in 42 poor counties of Western China. PLoS One 14, 1–14.; 67. Pinz ´on-Rond ´on ÁM, Gutiérrez-Pinzon V, Madrinan-Navia H ˜ et al. (2015) Low birth weight and prenatal care in Colombia: a cross-sectional study. BMC Pregnancy Childbirth 15, 118.; 68. Gyorkos TW & Gilbert NL (2014) Blood drain: soiltransmitted helminths and anemia in pregnant women. PLoS Negl Trop Dis 8, 7–8.; 69. Gopalakrishnan S, Eashwar VA, Muthulakshmi M et al. (2018) Intestinal parasitic infestations and anemia among urban female school children in Kancheepuram district, Tamil Nadu. J Fam Med Prim Care 7, 1395.; 70. Brooker S, Hotez PJ & Bundy DAP (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis 2, e291.; 71. Acevedo N, Sánchez J, Zakzuk J et al. (2012) Particular characteristics of allergic symptoms in tropical environments: follow up to 24 months in the FRAAT birth cohort study. BMC Pulm Med 12, 13.; 72. Ministry of Health and Social Protection (2013) Deworming Guideline “WHO Preventive Anthelmintic Chemotherapy”. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/LINEAMIENTOTest DESPARASIT ANTIHELMÍNTICA 080122014.pdf (accessed January 2021).; 5100; 5090; 15; 24; https://hdl.handle.net/11323/9082Test; https://doi.org/10.1017/S136898002100166XTest; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  4. 4
    دورية أكاديمية
  5. 5
    تقرير
  6. 6
    تقرير
  7. 7
    دورية أكاديمية

    المصدر: Revista Mexicana de Ciencias Políticas y Sociales; Vol. 69 No. 250 (2024): Dossier: Perspectivas multidisciplinarias de contextos de violencia: instituciones, movimientos sociales y políticas públicas ; Revista Mexicana de Ciencias Políticas y Sociales; Vol. 69 Núm. 250 (2024): Dossier: Perspectivas multidisciplinarias de contextos de violencia: instituciones, movimientos sociales y políticas públicas ; 2448-492X ; 0185-1918 ; 10.22201/fcpys.2448492xe.2024.250

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية

    جغرافية الموضوع: Colombia, Córdoba

    وصف الملف: 9 páginas; application/pdf

    العلاقة: Value in Health Regional Issues; 1. La OMS caracteriza a COVID-19 como una pandemia. Organización Panamericana de Salud. https://www.paho.org/hq/index.php?option=com_content&view=article&id=15756:who-characterizes-covid-19-as-a-pandemic&Itemid=1926&lang=esTest. Accessed February 1, 2021.; 2. Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus pandemic (COVID-19). OurWorldInData. https://ourworldindata.org/coronavirusTest. Accessed August 30, 2022.; 3. Prada SI, Garcia-Garcia MP, Guzman J. COVID-19 response in Colombia: hits and misses. Health Policy Technol. 2022;11(2):100621.; 4. Wang H, Paulson KR, Pease SA. Estimating excess mortality due to the COVID19 pandemic: a systematic analysis of COVID-19-related mortality, 2020-21. Lancet. 2022;399(10334):1513–1536.; 5. Casos de COVID-19 en Colombia. Instituto Nacionald de Salud. https://wwwTest. ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx. Accessed February 27, 2021.; 6. WHO coronavirus (COVID-19) dashboard. World Health Organization. https://covid19.who.int/?adgroupsurveyTest={adgroupsurvey}&gclid=EAIaIQobC hMI4vm_tdSS_gIV8JZLBR0JnA5CEAAYASABEgIFJfD_BwE. Accessed August 30, 2022.; 7. Proyecciones de población departamentales por área. Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.phpTest/ estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion. Accessed August 30, 2022.; 8. Mattar S, Alvis-Guzman N, Garay E, et al. Severe acute respiratory syndrome coronavirus 2 seroprevalence among adults in a tropical city of the Caribbean area, Colombia: are we much closer to herd immunity than developed countries? Open Forum Infect Dis. 2020;7(12):ofaa550.; 9. John D, Narassima MS, Menon J, Rajesh JG, Banerjee A. Estimation of economic burden of COVID-19 using disability-adjusted life years (DALYs) and productivity losses in Kerala state. BMJ Open. 2021;11(8):e049619.; 11. Murray CJL, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013;369(5):448–457.; 12. Demografía y población. Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografiay-poblacionTest. Accessed August 30, 2022.; 13. Proyecciones de población a 2020. Censo nacional de población y vivienda - CNPV. Departamento Administrativo Nacional de Estadística. https://wwwTest. dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proye cciones-de-poblacion. Accessed August 30, 2022.; 14. De la Hoz-Restrepo F, Alvis-Zakzuk NJ, De la Hoz-Gomez JF, De la Hoz A, Gómez Del Corral L, Alvis-Guzmán N. Is Colombia an example of successful containment of the 2020 COVID-19 pandemic? A critical analysis of the epidemiological data, March to July 2020. Int J Infect Dis. 2020;99: 522–529.; 15. Global burden of disease study 2019 (GBD 2019) disability weights. Institute for Health Metrics and Evaluation. https://ghdx.healthdata.org/record/ihmedata/gbd-2019-disability-weightsTest. Accessed August 30, 2022.; 16. Sistema de Información de la Protección Social - SISPRO. Portal de Consulta SISPRO. Ministerio de Salud y Protección Social. https://www.sispro.gov.coTest/ Pages/Home.aspx. Accessed August 30, 2022.; 17. Aalen OO, Johansen S. An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand J Stat. 1978;5(3):141– 150.; 18. Pires SM, Wyper G, Wengler A, et al. Burden of disease of COVID-19: strengthening the collaboration for national studies. Front Public Health. 2022;10:907012.; 19. Hidalgo-Troya A, Rodríguez JM, Rocha-Buelvas A, Urrego-Ricaurte D. Burden of disease of COVID-19 in the department of Nariño, Colombia, 2020-2021. Rev Peru Med Exp Salud Publ. 2022;39(3):281–291.; 20. Fan CY, Fann JC, Yang MC, et al. Estimating global burden of COVID-19 with disability-adjusted life years and value of statistical life metrics. J Formos Med Assoc. 2021;120(suppl 1):S106–S117.; 21. Gianino MM, Savatteri A, Politano G, Nurchis MC, Pascucci D, Damiani G. Burden of COVID-19: disability-adjusted life years (DALYs) across 16 European countries. Eur Rev Med Pharmacol Sci. 2021;25(17):5529–5541.; 22. Shindhe SD, Bhat S, Munoli SB. Burden of COVID-19: DALY and productivity loss for Karnataka, India. Indian J Public Health. 2022;66(3):239.; 23. Singh BB, Devleesschauwer B, Khatkar MS, et al. Disability-adjusted life years (DALYs) due to the direct health impact of COVID-19 in India, 2020. Sci Rep. 2022;121(1):2454.; 24. Cuschieri S, Calleja N, Devleesschauwer B, Wyper GMA. Estimating the direct COVID-19 disability-adjusted life years impact on the Malta population for the first full year. BMC Public Health. 2021;21(1):1827.; 25. Bhopal SS, Bhopal R. Sex differential in COVID-19 mortality varies markedly by age. Lancet. 2020;396(10250):532–533.; 26. Jin JM, Bai P, He W, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Heal. 2020;8:152.; 27. Sobotka T, Brzozowska Z, Muttarak R, Zeman K, di Lego V. Age, gender and COVID-19 infections. Preprint. Posted online May 26, 2020. medRxiv 20111765. https://doi.org/10.1101/2020.05.24.20111765Test; 28. Cruz R, Diz-de Almeida S, López de Heredia M, et al. Novel genes and sex differences in COVID-19 severity. Hum Mol Genet. 2022;31(22):3789–3806.; 29. Jo MW, Go DS, Kim R, et al. The burden of disease due to COVID-19 in Korea using disability-adjusted life years. J Korean Med Sci. 2020;35(21):e199.; 30. Moran D, Pires SM, Wyper G, Devleesschauwer B, Cuschieri S, Kabir Z. Estimating the direct disability-adjusted life years (DALYs) associated with SARSCoV-2 (COVID-19) in the Republic of Ireland: the first full year. Int J Public Health. 2022;67:1604699.; 31. Bonanad C, García-Blas S, Tarazona-Santabalbina F, et al. The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects. J Am Med Dir Assoc. 2020;21(7):915–918.; 32. Perez-Saez J, Lauer SA, Kaiser L, et al. Serology-informed estimates of SARSCoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020;21(4):e69–e70.; 33. Rommel A, Lippe EV, Plass D, et al. The COVID-19 disease burden in Germany in 2020-years of life lost to death and disease over the course of the pandemic. Dtsch Ärztebl Int. 2021;118(9):145–151.; 34. Pifarré, Arolas H, Acosta E, López-Casasnovas G, et al. Years of life lost to COVID-19 in 81 countries [published correction appears in Sci Rep. 2021;11(1):8543]. Sci Rep. 2021;11(1):3504.; 35. Salinas-Escudero G, Toledano-Toledano F, García-Peña C, Parra-Rodríguez L, Granados-García V, Carrillo-Vega MF. Disability-adjusted life years for the COVID-19 pandemic in the Mexican population. Front Public Health. 2021;9: 686700.; 36. Andersen LM, Harden SR, Sugg MM, Runkle JD, Lundquist TE. Analyzing the spatial determinants of local COVID-19 transmission in the United States. Sci Total Environ. 2021;754:142396.; 37. Bialek S, Bowen V, Chow N. Geographic differences in COVID-19 cases, deaths, and incidence — United States, February 12-April 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):465–471.; 38. Jamshidi S, Baniasad M, Niyogi D. Global to USA county scale analysis of weather, urban density, mobility, homestay, and mask use on COVID-19. Int J Environ Res Public Health. 2020;17(21):7847.; 39. Mathers CD, Fat DM, Inoue M, Rao C, Lopez AD. Counting the dead and what they died from: an assessment of the global status of cause of death data. Bull World Health Organ. 2005;83(3):171–177.; 40. Angulo FJ, Finelli L, Swerdlow DL. Estimation of US SARS-CoV-2 infections, symptomatic infections, hospitalizations, and deaths using seroprevalence surveys. JAMA Netw Open. 2021;4(1):e2033706.; 41. Lau H, Khosrawipour T, Kocbach P, Ichii H, Bania J, Khosrawipour V. Evaluating the massive underreporting and undertesting of COVID-19 cases in multiple global epicenters. Pulmonology. 2021;27(2):110–115.; 42. Wyper G, Fletcher E, Grant I, et al. Measuring disability-adjusted life years (DALYs) due to COVID-19 in Scotland, 2020. Arch Public Health. 2022;80(1):105.; 43. Asdaq SMB, Rabbani SI, Alshammari MK, et al. Burden of COVID-19: a preliminary analysis in the population of Saudi Arabia. PeerJ. 2022;10:e13219.; 44. Moran DP, Pires SM, Wyper GMA, Devleesschauwer B, Cuschieri S, Kabir Z. Estimating the direct disability-adjusted life years associated with SARS-CoV2 (COVID-19) in the Republic of Ireland: the first full year. Int J Public Health. 2022;67:1604699.; 45. Pires SM, Redondo HG, Espenhain L, et al. Disability adjusted life years associated with COVID-19 in Denmark in the first year of the pandemic. BMC Public Health. 2022;22(1):1315.; 46. Fernández-de-las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: a systematic review and meta-analysis. Eur J Intern Med. 2021;92:55–70.; 47. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 Longterm effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144.; 48. Maglietta G, Diodati F, Puntoni M, et al. Prognostic factors for post-COVID-19 syndrome: a systematic review and meta-analysis. J Clin Med. 2022;11(6):1541.; 49. Sigfrid L, Drake TM, Pauley E, et al. Long Covid in adults discharged from UK hospitals after Covid-19: a prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg Health Eur. 2021;8:100186.; 50. Schou TM, Joca S, Wegener G, Bay-Richter C. Psychiatric and neuropsychiatric sequelae of COVID-19 - a systematic review. Brain Behav Immun. 2021;97:328–348.; 51. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–260.; 52. Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infect Dis. 2022;22(1):43–55.; 53. Moghadas SM, Moghadas SM, Vilches TN, et al. The impact of vaccination on coronavirus disease 2019 (COVID-19) outbreaks in the United States. Clin Infect Dis. 2021;73(12):2257–2264.; 17; 37; https://hdl.handle.net/11323/10509Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Panorama Económico; https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/2588/2166Test; Núm. 3 , Año 2019; 700; 689; 27; Borges, G., Medina-Mora, M., Orozco, R., & Ouéda, C. (2009). Distribución y determinantes sociodemográficos de la conducta suicida en México. Salud Mental.; Diana Carolina Aguirre-Florez, Jose Jaime Castaño-Castrillon, F. M.-S. et al. (2013). Riesgo suicida y factores asociados en adolescentes en tres colegios de la ciudad de Manizales (Colombia). Revista de Facultad de Medicina, 63(3), 419-29. https://doi.org/10.15446/revfacmed.v63n3.44205Test; Durkheim, E. (1995). El suicidio. Coyoacán, Mexico.; Gómez Carlos, et al. (2002). Factores asociados al intento de suicidio en la población colombiana. Revista Colombiana de Psiquiatría, 271-286.; Gómez-Restrepo, Carlos. Rodriguez Malagón, Nelcy. Bohórquez P, A. et al. (2002). Factores Asociados al intento de suicido en la población colombiana. Revista Colombiana de Psiquiatría, 31(4).; González-Forteza C, Ramos L, Caballero MA, W. F. (2003). Correlatos psicosociales de depresión, ideación e intento suicida en adolescentes mexicanos. Psicothema, 15, 524-532.; González-Macip S, Diaz A, Ortiz S, González-Forteza C, G.-N. J. (2000). Características psicométricas de la EScala de Ideación Suicida de Beck (ISB) en estudiantes universitarios de la ciudad de México. Salud Mental, 23, 21-30.; Gutierez Ana, Contreras Carlos, O. R. (2011). El suicidio, conceptos actuales. Revista Unimar, 27-84. Retrieved from http://www.redalyc.org/pdf/582/58229510.pdfTest; Hernán, V.-G. F. (2009). Situación de la conducta suicida en estudiantes de colegios y universidades de San Juan de Pasto, Colombia. Salud Mental, 32(2). Retrieved from http://www.scielo.org.mx/scielo.php?pid=S0185-33252009000200009&script=sci_arttextTest INS. (2015).; Kaplan HI, S. (2009). Comprehensive textbook of psychiatry (9th ed.). Philadelphia.; Moscicki, E. (1999). Identification of suicide risk factors using epidemiologic studies. Psychiatr Clin Norht Am, 20(4), 499-517. https://doi.org/10.1016/S0193-953XTest(05)70327-0; OMS. (2014). La prevención de suicidio. Luxemburgo: Organizacion Mundial de la Salud.; OMS. (2015). Retrieved from http://www.who.int/mediacentre/factsheets/fs351/esTest/; Pérez Isabel, et al. Factores asociados al intento suicida e ideación suicida persistente en un centro de atención primaria. (2004). Bogotá.; Rada, V. D. de. (2004). Problemas de representatividad en las encuestas con muestreos probabilísticos. Papers 74, 45-66. https://doi.org/10.5565/rev/papers/v74n0.1081Test; Ramírez, J. (2012). Caracterización socio-demográfica del área de desarrollo rural de los montes de maría. Retrieved from http://www.incoder.gov.co/documentos/Estrategia_de_Desarrollo_Rural/Pertiles_Territoriales/A_R_Montes_de_Maria/PerfilTerritorial/CARACTERIZACIONSOCIO-DEMOGRAFICA_MONTES_DE_MAR%C3%8DA.pdfTest; https://hdl.handle.net/11227/13851Test; https://doi.org/10.32997/2463-0470-vol.27-num.3-2019-2588Test