يعرض 1 - 10 نتائج من 1,047 نتيجة بحث عن '"VECTION"', وقت الاستعلام: 1.01s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Hacohen-Brown, Shira1 (AUTHOR), Gilboa-Schechtman, Eva1,2 (AUTHOR), Zaidel, Adam1 (AUTHOR) adam.zaidel@biu.ac.il

    المصدر: BMC Biology. 5/23/2024, Vol. 22 Issue 1, p1-14. 14p.

    مستخلص: Background: Threat and individual differences in threat-processing bias perception of stimuli in the environment. Yet, their effect on perception of one's own (body-based) self-motion in space is unknown. Here, we tested the effects of threat on self-motion perception using a multisensory motion simulator with concurrent threatening or neutral auditory stimuli. Results: Strikingly, threat had opposite effects on vestibular and visual self-motion perception, leading to overestimation of vestibular, but underestimation of visual self-motions. Trait anxiety tended to be associated with an enhanced effect of threat on estimates of self-motion for both modalities. Conclusions: Enhanced vestibular perception under threat might stem from shared neural substrates with emotional processing, whereas diminished visual self-motion perception may indicate that a threatening stimulus diverts attention away from optic flow integration. Thus, threat induces modality-specific biases in everyday experiences of self-motion. [ABSTRACT FROM AUTHOR]

  2. 2
    دورية أكاديمية

    المؤلفون: Uesaki, Maiko1,2,3 (AUTHOR) uesaki@nict.go.jp, Biswas, Arnab3,4 (AUTHOR), Ashida, Hiroshi5 (AUTHOR) ashida@psy.bun.kyoto-u.ac.jp, Maus, Gerrit3 (AUTHOR)

    المصدر: i-Perception. Mar/Apr2024, Vol. 15 Issue 2, p1-9. 9p.

    مصطلحات موضوعية: *OPTICAL illusions, *VECTION, *SNAKES, *MOTION

    مستخلص: The Rotating Snakes illusion is a visual illusion where a stationary image elicits a compelling sense of anomalous motion. There have been recurring albeit anecdotal claims that the perception of illusory motion is more salient when the image consists of patterns with the combination of blue and yellow; however, there is limited empirical evidence that supports those claims. In the present study, we aimed to assess whether the Rotating Snakes illusion is more salient in its blue-yellow variation, compared to red-green and greyscale variations when the luminance of corresponding elements within the patterns were equated. Using the cancellation method, we found that the velocity required to establish perceptual stationarity was indeed greater for the stimulus composed of patterns with a blue-yellow combination than the other two variants. Our findings provide, for the first time, empirical evidence that the presence of colour affects the magnitude of illusion in the Rotating Snakes illusion. [ABSTRACT FROM AUTHOR]

  3. 3
    دورية أكاديمية

    المؤلفون: Kéri, Szabolcs1,2 (AUTHOR) keri.szabolcs.gyula@med.u-szeged.hu, Kelemen, Oguz3,4 (AUTHOR) kelemen.oguz@med.u-szeged.hu

    المصدر: Pediatric Reports. Mar2024, Vol. 16 Issue 1, p88-99. 12p.

    مستخلص: (1) Background: Childhood-onset schizophrenia (COS) is a rare type of psychotic disorder characterized by delusions, hallucinations, grossly disorganized behavior, and poor psychosocial functioning. The etiology of COS is unknown, but neurodevelopmental factors are likely to play a critical role. A potential neurodevelopmental anomaly marker is the dorsal visual system dysfunction, which is implicated in motion perception, spatial functions, and attention. (2) Methods: To elucidate the role of the dorsal visual system in COS, we investigated 21 patients with COS and 21 control participants matched for age, sex, education, IQ, and parental socioeconomic status. Participants completed a motion and form coherence task, during which one assesses an individual's ability to detect the direction of motion within a field of moving elements or dots and to recognize a meaningful form or object from a set of fragmented or disconnected visual elements, respectively. (3) Results: The patients with COS were impaired in both visual tasks compared to the control participants, but the evidence for the deficit was more substantial for motion perception than for form perception (form: BF10 = 27.22; motion: BF10 = 6.97 × 106). (4) Conclusions: These results highlight the importance of dorsal visual stream vulnerability in COS, a potential marker of neurodevelopmental anomalies. [ABSTRACT FROM AUTHOR]

  4. 4
    دورية أكاديمية

    المؤلفون: Kozaki, Tomoaki1 (AUTHOR) kozaki@fwu.ac.jp, Seno, Takeharu2 (AUTHOR), Kitaoka, Akiyoshi3 (AUTHOR)

    المصدر: i-Perception. Jan/Feb2024, Vol. 15 Issue 1, p1-12. 12p.

    مصطلحات موضوعية: *VECTION, *VISUAL perception, *VISUAL cortex, *MOTION, *OPTICAL illusions

    مستخلص: Visual motion signals can produce self-motion perception known as vection in observers. Vection can be generated by illusory motions in the form of global expantion in still images as well as by visual motion signals. The perception of vection can be enhanced by flickering images at a rate of 5 Hz. This study examined the illusory motion and vection induced by a printed static image under flickering ambient light at rates up to 100 Hz. The perception of illusory motion and vection were enhanced by flickering ambient lights at 50, 75, and 100 Hz. The enhancement effect was higher for the flicker rates expected to be detectable by humans. The findings of this study suggest that alternating bright and dark signals to the cone receptors and primary visual cortex trigger perceptions of illusory motions. [ABSTRACT FROM AUTHOR]

  5. 5
    دورية أكاديمية

    المؤلفون: Kondo, Tetsuta1 (AUTHOR), Hirao, Yutaro1 (AUTHOR), Narumi, Takuji1 (AUTHOR), Amemiya, Tomohiro1,2,3 (AUTHOR) amemiya@vr.u-tokyo.ac.jp

    المصدر: Scientific Reports. 11/18/2023, Vol. 13 Issue 1, p1-12. 12p.

    مصطلحات موضوعية: *VECTION, *VESTIBULAR apparatus, *MASTOID process, *VIRTUAL reality, *SENSES

    مستخلص: Illusory self-motion ("vection") has been used to present a sense of movement in virtual reality (VR) and other similar applications. It is crucial in vection research to present a stronger sense of movement. Bone-conducted vibration (BCV) is a small and generally acceptable method for enhancing the sense of movement in VR. However, its effects on vection have not been extensively studied. Here, we conducted two experiments to investigate the effect of BCV on the vection, which generates an upward sensation under the hypothesis that BCV stimulation to the mastoid processes causes noise in the vestibular system and enhances visually-induced self-motion perception. The experiments focused on the effects of BCV stimuli of different frequencies on the vection experience. The results suggested that 500 Hz BCV was more effective as noise to the vestibular system than other frequency BCVs and improved self-motion sensation. This study examines the effects of BCV with different frequencies on the vection experience and designs a theory for using BCV in VR. [ABSTRACT FROM AUTHOR]

  6. 6
    دورية أكاديمية

    المؤلفون: Cleworth, Taylor W.1,2 (AUTHOR) tclewort@yorku.ca, Allum, John H. J.3 (AUTHOR) john.allum@usb.ch, Nielsen, Emma I.4 (AUTHOR) emma.nielsen@ubc.ca, Carpenter, Mark G.4 (AUTHOR) mark.carpenter@ubc.ca

    المصدر: Brain Sciences (2076-3425). Nov2023, Vol. 13 Issue 11, p1502. 11p.

    مستخلص: Background: Falls and related injuries are critical issues in several disease states, as well as aging, especially when interactions between vestibular and visual sensory inputs are involved. Slow support surface tilt (0.6 deg/s) followed by subjective postural horizontal (SPH) assessments have been proposed as a viable method for assessing otolith contributions to balance control. Previous assessments of perceived body alignment to vertical, including subjective visual vertical, have suggested that visual inputs are weighted more when vestibular information is near the threshold and less reliable during slow body tilt. To date, no studies have examined the influence of visual stimuli on slow roll-tilt postural responses and the SPH. Therefore, this study investigated how dynamic visual cues, in the form of circular vection (CV), influence postural responses and the perception of the horizontal during and after support surface tilt. Methods: Ten healthy young adults (6 female, mean age 23) wore a head-mounted display while standing on a tilting platform. Participants were asked to remain upright for 30 s, during which (1) the visual scene rotated, inducing roll CV clockwise (CW) or counter-clockwise (CCW) at 60°/s; (2) the platform only (PO) rotated in roll to test SPH (0.6°/s, 2°, CW or CCW); (3) a combination of both; or (4) neither occurred. During SPH trials, participants used a hand-held device to reset the position of the platform to 0.8°/s to their perceived SPH. The angular motion of body segments was measured using pairs of light-emitting diodes mounted on the head, trunk and pelvis. Segment motion, prior to platform motion, was compared to that at peak body motion induced by platform motion and when SPH had been set. Results: When the support surface was tilted 2°, peak upper body tilt significantly increased for congruent CV and platform tilt and decreased at the pelvis for incongruent CV when compared to PO, leading to significant differences across body segments for congruent and incongruent conditions (p ≤ 0.008). During PO, participants' mean SPH deviated from horizontal by 0.2°. The pelvis deviated 0.2°, the trunk 0.3°, and the head 0.5° in the direction of initial platform rotation. When platform tilt and CV directions were congruent or incongruent, only head tilt at SPH reset under congruent conditions was significantly different from the PO condition (1.7° vs. 0.5°). Conclusions: Roll CV has a significant effect on phasic body responses and a less significant effect on tonic body responses to lateral tilt. The SPH of the support surface was not altered by CV. Responses during tilt demonstrated enhanced reactions for congruent and reduced reactions for incongruent CV, both different from responses to CV alone. Tonic body displacements associated with SPH were changed less than those during tilt and were only slightly larger than displacements for CV alone. This study supports the hypothesis of weighted multisensory integration during dynamic postural tasks being highly dependent on the direction of visual cues during tilt and less dependent on tonic SPH offsets. These techniques could be used to examine vestibular and visual interactions within clinical populations, particularly those with visual vertigo and dizziness. [ABSTRACT FROM AUTHOR]

  7. 7
    دورية أكاديمية

    المصدر: Virtual Reality; Jun2024, Vol. 28 Issue 2, p1-21, 21p

    مستخلص: The illusory experience of self-motion known as vection, is a multisensory phenomenon relevant to self-motion processes. While some studies have shown that neck muscle vibrations can improve self-motion parameter estimation, the influence on vection remains unknown. Further, few studies measured cybersickness (CS), presence, and vection concurrently and have shown conflicting results. It was hypothesized that 1) neck vibrations would enhance vection and presence, and 2) CS to negatively relate to presence and vection, whereas presence and vection to positively relate to one another. Thirty-two participants were visually and audibly immersed in a virtual reality flight simulator and occasional neck muscle vibrations were presented. Vection onset and duration were reported through button presses. Turning angle estimations and ratings of vection quality, presence, and CS were obtained after completion of the flights. Results showed no influence of vibrations on turning angle estimation errors, but a medium positive effect of vibrations on vection quality was found. Presence and vection quality were positively related, and no strong association between CS and presence or vection was found. It is concluded that neck vibrations may enhance vection and presence, however, from the current study it is unclear whether this is due to proprioceptive or tactile stimulation. [ABSTRACT FROM AUTHOR]

    : Copyright of Virtual Reality is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  8. 8
    دورية أكاديمية

    المصدر: Human Brain Mapping; May2024, Vol. 45 Issue 7, p1-24, 24p

    مستخلص: Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near‐infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations. As a result, typical and atypical developmental trajectories of processes such as language acquisition remain understudied during sensitive periods over the first years of life. We evaluate high‐density diffuse optical tomography (HD‐DOT) imaging combined with movie stimuli for high resolution optical neuroimaging in awake children ranging from 1 to 7 years of age. We built an HD‐DOT system with design features geared towards enhancing both image quality and child comfort. Furthermore, we characterized a library of animated movie clips as a stimulus set for brain mapping and we optimized associated data analysis pipelines. Together, these tools could map cortical responses to movies and contained features such as speech in both adults and awake young children. This study lays the groundwork for future research to investigate response variability in larger pediatric samples and atypical trajectories of early brain development in clinical populations. [ABSTRACT FROM AUTHOR]

    : Copyright of Human Brain Mapping is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  9. 9
    دورية أكاديمية

    المصدر: Diagnostics (2075-4418); Mar2024, Vol. 14 Issue 5, p513, 17p

    مستخلص: Background: The Balance Error Scoring System (BESS) is a commonly used method for clinically evaluating balance after traumatic brain injury. The utilization of force plates, characterized by their cost-effectiveness and portability, facilitates the integration of instrumentation into the BESS protocol. Despite the enhanced precision associated with instrumented measures, there remains a need to determine the clinical significance and feasibility of such measures within pediatric cohorts. Objective: To report a comprehensive set of posturographic measures obtained during instrumented BESS and to examine the concurrent validity, reliability, and feasibility of instrumented BESS in the pediatric point of care setting. Methods: Thirty-seven participants (18 female; aged 13.32 ± 3.31 years) performed BESS while standing on a force plate to simultaneously compute stabilometric measures (instrumented BESS). Ellipse area (EA), path length (PL), and sway velocity (VM) were obtained for each of the six BESS positions and compared with the respective BESS scores. Additionally, the effects of sex and age were explored. A second BESS repetition was performed to evaluate the test–retest reliability. Feedback questionnaires were handed out after testing to evaluate the feasibility of the proposed protocol. Results: The BESS total score was 20.81 ± 6.28. While there was no statistically significant age or sex dependency in the BESS results, instrumented posturography demonstrated an age dependency in EA, VM, and PL. The one-leg stance on a soft surface resulted in the highest BESS score (8.38 ± 1.76), EA (218.78 cm2 ± 168.65), PL (4386.91 mm ± 1859.00), and VM (21.93 mm/s ± 9.29). The Spearman's coefficient displayed moderate to high correlations between the EA (rs = 0.429–0.770, p = 0.001–0.009), PL (rs = 0.451–0.809, p = 0.001–0.006), and VM (rs = 0.451–0.809, p = 0.001–0.006) when compared with the BESS scores for all testing positions, except for the one-leg stance on a soft surface. The BESS total score significantly correlated during the first and second repetition (rs = 0.734, p ≤ 0.001), as did errors during the different testing positions (rs = 0.489–0.799, p ≤ 0.001–0.002), except during the two-legged stance on a soft surface. VM and PL correlated significantly in all testing positions (rs = 0.465–0.675, p ≤ 0.001–0.004; (rs = 0.465–0.675, p ≤ 0.001–0.004), as did EA for all positions except for the two-legged stance on a soft surface (rs = 0.392–0.581, p ≤ 0.001–0.016). A total of 92% of participants stated that the instructions for the testing procedure were very well-explained, while 78% of participants enjoyed the balance testing, and 61% of participants could not decide whether the testing was easy or hard to perform. Conclusions: Instrumented posturography may complement clinical assessment in investigating postural control in children and adolescents. While the BESS score only allows for the consideration of a total score approximating postural control, instrumented posturography offers several parameters representing the responsiveness and magnitude of body sway as well as a more differentiated analysis of movement trajectory. Concise instrumented posturography protocols should be developed to augment neuropediatric assessments in cases where a deficiency in postural control is suspected, potentially stemming from disruptions in the processing of visual, proprioceptive, and/or vestibular information. [ABSTRACT FROM AUTHOR]

    : Copyright of Diagnostics (2075-4418) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  10. 10
    دورية أكاديمية

    المصدر: Human Brain Mapping; Feb2024, Vol. 45 Issue 2, p1-19, 19p

    مستخلص: Agreeableness is one of the five personality traits which is associated with theory of mind (ToM) abilities. One of the critical processes involved in ToM is the decoding of emotional cues. In the present study, we investigated whether this process is modulated by agreeableness using electroencephalography (EEG) while taking into account task complexity and sex differences that are expected to moderate the relationship between emotional decoding and agreeableness. This approach allowed us to identify at which stage of the neural processing agreeableness kicks in, in order to distinguish the impact on early, perceptual processes from slower, inferential processing. Two tasks were employed and submitted to 62 participants during EEG recording: the reading the mind in the eyes (RME) task, requiring the decoding of complex mental states from eye expressions, and the biological (e)motion task, involving the perception of basic emotional actions through point‐light body stimuli. Event‐related potential (ERP) results showed a significant correlation between agreeableness and the contrast for emotional and non‐emotional trials in a late time window only during the RME task. Specifically, higher levels of agreeableness were associated with a deeper neural processing of emotional versus non‐emotional trials within the whole and male samples. In contrast, the modulation in females was negligible. The source analysis highlighted that this ERP‐agreeableness association engages the ventromedial prefrontal cortex. Our findings expand previous research on personality and social processing and confirm that sex modulates this relationship. [ABSTRACT FROM AUTHOR]

    : Copyright of Human Brain Mapping is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)