دورية أكاديمية

Amino and fatty acids composition of olive stones for the discrimination of 'Olea europaea' subsp. 'europaea' varieties

التفاصيل البيبلوغرافية
العنوان: Amino and fatty acids composition of olive stones for the discrimination of 'Olea europaea' subsp. 'europaea' varieties
المؤلفون: Hannachi, Hédia, Benabderrahim, Mohamed Ali, Elfalleh, Walid, Wang, Rongchun, Ying, Ma
المصدر: Mediterranean Botany; Vol 41 No 2 (2020); 163-172 ; Mediterranean Botany; Vol. 41 Núm. 2 (2020); 163-172 ; 2603-9109
بيانات النشر: Ediciones Complutense
سنة النشر: 2020
المجموعة: Universidad Complutense de Madrid (UCM): Revistas Científicas Complutenses
مصطلحات موضوعية: cultivars, oleaster, olive stones, multivariate analyses, amino acids, fatty acids, olive tree, Tunisia
الوصف: Few studies have reported the relationship between wild (Olea europaea L. subsp. europaea var. sylvestris) and cultivated (Olea europaea L. subsp. europaea var. europaea) olive trees by using diverse markers. Herein, the amino and fatty acids composition of stones from wild and cultivated olives were assessed respectively using amino acids analyzer and gas chromatography coupled with mass spectrometry. Stones of 24 Tunisian olive samples including twelve cultivated trees and twelve wild trees were obtained from olives harvested at ripe stage. Results showed that 17 amino acids (with eight essential amino acids) and 15 fatty acids (eight saturated and seven unsaturated) were detected in the both olive taxa. Statistically, significant differences among wild and cultivated stones were observed for amino and fatty acids contents. Based on the major fatty acids and the essential amino acids, multivariate analyses classified olive varieties into three groups showing a close relationship between some wild and cultivated olive trees. Results were useful to distinguish some interest wild olive genotypes having stones richer in essential amino acids and monounsaturated fatty acids. Wild olive trees would constitute a genetic pool of interest criteria. These data would be used as complementary tool to morphological traits and molecular markers studies providing a relationship between the cultivated and wild olive trees.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
العلاقة: https://revistas.ucm.es/index.php/MBOT/article/view/65609/4564456554279Test; Angiolillo, A., Mencuccini, M. & Baldoni, L. 1999. Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor. Appl. Genet. 98: 411–421.; Anonymous. 2017. International Olive Council: determination of fatty acid methyl esters by gas chromatography. COI/T.20/Doc. No 33/Rev.1.; Asensio, M.L., Valdés, E. & Cabello, F. 2002. Characterization of some Spanish grapevine cultivars by morphology and amino acid analysis. Sci. Hortic. 93: 289–299.; Baccouri, B., Guerfel, M., Zarrouk, W., Taamalli, W., Daoud, D. & Zarrouk, M. 2011. Wild olive (Olea europaea L.) selection for quality oil production. J. Food Biochem. 35: 161–176.; Barranco, D., Cimato, A., Fiorino, P., Rallo, L., Touzani, A., Castañeda, C., Serafín, F. & Trujillo, I. 2000. World catalogue of olive varieties. International Olive Oil Council Press, Madrid, Spain.; Belaj, A., León, L., Satovic, Z. & De la Rosa, R. 2011. Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Sci. Hortic. 129: 561–569.; Benabderrahim, M.A., Yahia, Y., Bettaieb, I., Elfalleh, W. & Nagaz, K. 2019. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Ind. Crops Prod. 138: 111427.; Breton, C., Besnard, G. & Bervillé, A. 2006a. Using multiple types of molecular markers to understand olive phylogeography. In: Zeder, M.A., Decker-Walters, D., Bradley, D. & Smith, B. (Ed.). Documenting Domestication, New Genetic and Archaeological Paradigms. Pp. 142–153. Univ. California Press, USA.; Breton, C., Medail, F., Pinatel, C. & Bervillé, A. 2006b. From olive tree to Oleaster: origin and domestication of Olea europaea L. in the Mediterranean basin. Cahiers Agric. 15: 329–336.; Bronzini de Caraffa, V., Giannettini, J., Gambotti, C. & Maury, J. 2002. Genetic relationships between cultivated and wild olives of Corsica and Sardina using RAPD markers. Euphytica 123: 263–271.; Cerretani, L., Bendini, A., Del Caro, A., Piga, A., Vacca, V., Caboni, M.F. & Toschi, T.G. 2006. Preliminary characterisation of virgin olive oils obtained from different cultivars in Sardinia. Europ. Food Res. Techn. 222: 354–361.; Dabbou, S., Selvaggini, R., Urbani, S., Taticchi, A., Servili, M. & Hammami M. 2011. Comparison of the chemical composition and the organoleptic profile of virgin olive oil from two wild and two cultivated Tunisian Olea europaea. Chem. Biodivers. 8: 189–202.; Di Donna, L., Mazzotti, F., Naccarato, A., Salerno, R., Tagarelli, A., Taverna, D. & Sindona, G. 2010. Secondary metabolites of Olea europaea leaves as markers for the discrimination of cultivars and cultivation zones by multivariate analysis. Food Chem. 121: 492–496.; Elfalleh, W., Hannachi, H., Guetet, A., Guasmi, F., Ferchichi, A. & Ying, M. 2012. Clustering of Tunisian and Chinese pomegranate cultivars based on storage protein and amino acid contents. Genet. Res. Crop Evol. 59: 999–1014.; Elfalleh, W., Kirkan, B., & Sarikurkcu, C. 2019. Antioxidant potential and phenolic composition of extracts from Stachys tmolea: an endemic plant from Turkey. Ind. crops prod. 127: 212–216.; Fernández, M.J. 1960. Las proteínas de la semilla de aceitunas. II. Aminoácidos en la hidrólisis ácida. Grasas y aceites 11: 173–179.; Green, P.S. 2002. A revision of Olea L. (Oleaceae). Kew Bull. 57: 91–140.; Hannachi, H., Breton, C., Msallem, M., Ben El Hadj, S., El Gazzah, M. & Bervillé, A. 2008a. Differences between native and introduced olive cultivars as revealed by morphology of drupes, oil composition and SSR polymorphisms: A case study in Tunisia. Sci. Hortic. 116: 280–290.; Hannachi, H., Breton, C., Msallem, M., Ben El Hadj, S., El Gazzah, M. & Bervillé A. 2008b. Are olive cultivars distinguishable from oleaster trees based on morphology of drupes and pits, oil composition and microsatellite polymorphisms? Acta Bot. Gallica 155: 531–545.; Hannachi, H., Breton, C., Msallem, M., Ben El Hadj, S., El Gazzah, M. & Bervillé A. 2010. Genetic relationships between cultivated and wild olive trees (Olea europaea L. var. europaea and var. sylvestris) based on nuclear and chloroplast SSR markers. Nat. Res. SCIRP J. 1: 95–103.; Hannachi, H., Martín Gómez, J.J., Saadaoui, E. & Cervantes, E. 2016. Stone diversity in wild and cultivated olive trees (Olea europaea L.) Dendrobiology 77: 19–32.; Hannachi, H., Msallem, M., Ben El Hadj, S. & El Gazzah, M. 2007. Influence du site géographique sur les potentialités agronomique et technologique de l’olivier (Olea europaea L.) en Tunisie. Comp. Rend. Biol. 33: 135–142.; Hannachi, H., Nizar, N., Walid, E., Nizar, T., Ali, F. & Monji, M. 2013. Fatty acids, sterols, polyphenols and chlorophylls of olive oils obtained from Tunisian wild olive trees (Olea europaea L. var. sylvestris). Int. J. Food Prop. 16: 1271–1283.; Hannachi, H., Sommerlatte, H., Breton, C., Msallem, M., El Gazzah, M., Ben El Hadj, S. & Bervillé, A. 2009. Oleaster (var sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet. Res. Crop Evol. 56: 393–403.; Henschke, P.A. & Jiranek, V. 1992. Yeast metabolism of nitrogen compounds. In: Fleet, G.H. (Ed.). Wine, Microbiology and Biotechnology. Pp. 77–164. Harwood Acad. Publ., Sydney.; Idrissi, A. & Ouazzani, N. 2003. Apport des descripteurs morphologiques à l’inventaire et à l’identification des variétés d’olivier (Olea europaea L.). PGR Newsletter 136: 1–10.; Kirillov, V., Stikhareva, T., Atazhanova, G., Makubayeva, A., Serafimovich, M., Kabanova, S., Rakhimzhanov, A. & Adekenov, S. 2019. Composition of essential oil of leaves and fruits of green strawberry (Fragaria viridis Weston) growing wild in Northern Kazakhstan. J. Appl. Bot. Food Qual. 92: 39–48.; Kotti, F., Cerretani, L., Gargouri, M., Chiavaro, E. & Bendini, A. 2009. Evaluation of the volatile fraction of commercial virgin olive oils from Tunisia and Italy: relation with olfactory attributes. J. Food Biochem. 35: 681–698.; Kratz, M., Cullen, P., Kannenberg, F., Kassner, A., Fobker, M., Abuja, P.M., Assmann, G. & Wahrburg, U. 2002. Effects of dietary fatty acids on the composition and oxidizability of low-density lipo-protein. Europ. J. Clin. Nutr. 56: 72–81.; Krichene, D., Taamalli, W., Daoud, D., Salvador, M.D., Fregapane, G. & Zarrouk, M. 2007. Phenolic compounds, tocopherols and other minor components in virgin olive oils of some Tunisian varieties. J. Food Biochem. 31: 179–194.; Lazovic, B., Miranovic, K., Gasic, O. & Popovic, M. 1999. Olive protein content and amino acid composition. Acta Hort. 474: 465–468.; Lazzez, A., Perri, E., Caravita, A.M., Khlif, M. & Cossentini, M. 2008. Influence of olive maturity stage and geographical origin on some minor components in virgin olive oil of the Chemlali variety. J. Agric. Food Chem. 56: 982–988.; Lumaret, R. & Ouazzani, N. 2001. Ancient wild olives in Mediterranean forest. Nature 413: 700.; Lumaret, R., Ouazzani, N., Michaud, H., Vivier, G., Deguilloux, M.F. & Di Giusto, F. 2004. Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean Basin. Heredity 92: 343–351.; Ouni, Y., Taamalli, A., Gómez-Caravaca, A.M., Segura-Carretero, A., Fernández-Gutiérrez, A. & Zarrouk M. 2011. Characterisation and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC-ESI-TOF MS method. Food Chem. 127: 1263–1267.; Petrakis, P., Agiomyrgianaki, A., Christophoridou, S., Spyros, A. & Dais, P. 2008. Geographical characterization of Greek virgin olive oils (Cv. Koroneiki) using 1H and 31P NMR Fingerprinting with Canonical Discriminant Analysis and Classification Binary Trees. J. Agric. Food Chem. 56: 3200–3207.; Roche, H.M., Gibney, M.J., Kafatos, A., Zampelas, A. & Williams, C.M. 2000. Beneficial properties of olive oil. Food Res. Int. 33: 227–231.; Rodney, J.M., Ayton, J. & Graham, K. 2010. The influence of growing region. cultivar and harvest timing on the diversity of Australian olive oil. J. Am. Oil Chem. Soc. 87: 877–884.; Salas, J.J., Sánchez, J., Ramli, U.S., Manaf, A.M., Williams, M. & Harwood, J.L. 2000. Biochemistry of lipid metabolism in olive and other oil fruits. Prog. Lipid Res. 39: 151–180.; Trujillo, I., Rallo, L. & Arus, P. 1995. Identifying olive cultivars by isozyme analysis. J. Am. Soc. Hortic. Sci. 120: 318–324.; Tura, D., Gigliotti, C., Pedò, S., Failla, O., Bassi, D. & Serraiocco, A. 2007. Influence of cultivar and site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (Olea europea L.) and correlations with oxidative stability. Sci. Hortic. 112: 108–119.; https://revistas.ucm.es/index.php/MBOT/article/view/65609Test
DOI: 10.5209/mbot.65609
الإتاحة: https://doi.org/10.5209/mbot.65609Test
https://revistas.ucm.es/index.php/MBOT/article/view/65609Test
حقوق: Derechos de autor 2020 Mediterranean Botany
رقم الانضمام: edsbas.E944E3EE
قاعدة البيانات: BASE