Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress

التفاصيل البيبلوغرافية
العنوان: Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress
المؤلفون: Guanghui Wang, Zheng-Hong Qin, Kui Cui, Rong Han, Xuechu Zhen, Jin-Hua Gu, Jian-Qun Kou
المصدر: BMC Complementary and Alternative Medicine
بيانات النشر: BioMed Central, 2014.
سنة النشر: 2014
مصطلحات موضوعية: Male, Pulmonary Fibrosis, Interleukin-1beta, Anti-Inflammatory Agents, Inflammation, Pharmacology, Bleomycin, medicine.disease_cause, complex mixtures, NF-κB, Antioxidants, Rats, Sprague-Dawley, chemistry.chemical_compound, Mice, Fibrosis, Transforming Growth Factor beta, Pulmonary fibrosis, medicine, Animals, Elapidae, Lung, Elapid Venoms, business.industry, Tumor Necrosis Factor-alpha, NF-kappa B, TGF-βm, General Medicine, medicine.disease, NFKB1, Hydroxyproline, Oxidative Stress, chemistry, Complementary and alternative medicine, Immunology, Tumor necrosis factor alpha, Female, medicine.symptom, business, Naja naja atra venom, Oxidative stress, Research Article
الوصف: Background Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation. In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. Methods To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. Results The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. Conclusions The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.
اللغة: English
تدمد: 1472-6882
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bce627ff7e875d191e4dd590220cd33Test
http://europepmc.org/articles/PMC4258260Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....0bce627ff7e875d191e4dd590220cd33
قاعدة البيانات: OpenAIRE