يعرض 1 - 10 نتائج من 22 نتيجة بحث عن '"Ronit Sagi Eisenberg"', وقت الاستعلام: 1.58s تنقيح النتائج
  1. 1
  2. 2

    المصدر: BMC biology. 20(1)

    الوصف: Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis.

  3. 3

    المصدر: Cells
    Volume 10
    Issue 2
    Cells, Vol 10, Iss 376, p 376 (2021)

    الوصف: The identification of the Mas-related G-protein-coupled receptors (Mrgpr) as targets of diverse stimuli of mast cells (MCs), including neuropeptides and pseudo-allergy causing drugs, has placed these receptors at a prime position in MC research. However, the species-dependent diversity of these receptors raises the need for an adequate model for investigating the human MRGPRX2 receptor. RBL-2H3 cells, stably transfected with MRGPRX2 (RBL-MRGPRX2), are increasingly used for this purpose. Therefore, we investigated whether ectopically expressed MRGPRX2, in rat MCs, recapitulates its authentic signaling. To this purpose, we performed a broad comparative study of the responses of human LAD-2 MCs that express MRGPRX2 endogenously, and RBL-MRGPRX2 cells to compound 48/80, substance P and vancomycin, three proto-type ligands of MRGPRX2. We demonstrate that both models share similar dose–response relationships, kinetics and sensitivities to a wide range of signaling targeting drugs. Therefore, our results indicate that ectopically expressed MRGPRX2 preserves the signaling pathways employed to evoke human MC degranulation, which we show to rely on ERK1/2 MAP kinases, phospholipase C (PLC) and autophagy-related signaling. Importantly, we also show that the underlying mechanisms of MRGPRX2-triggered MC degranulation in either LAD-2 or RBL-MRGPRX2 cells are different from those elicited by its rodent orthologs.

    وصف الملف: application/pdf

  4. 4

    المصدر: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1833:2070-2082

    الوصف: ERK1 and ERK2 are highly homologous isoforms that often play redundant roles in regulating cellular functions. We analyzed the spatiotemporal patterns of ERK1 and ERK2 in resting and activated mast cells. Strikingly, we identified distinct pathways for these kinases. ERK1 localized to the cytosol and translocated to the nucleus upon cell activation and kinase phosphorylation. In contrast, ERK2 distributed between the cytosol and near the microtubule organizing center (MTOC) in resting cells and accumulated further at a pericentrosomal region upon cell trigger. Pericentrosomal accumulation of ERK2 was phosphorylation independent, required an intact microtubule network and was significantly enhanced by the overexpression of Neuronal Calcium Sensor-1 (NCS-1). We also identified γ-tubulin and phosphatidylinositol 4 kinaseβ (PI4Kβ), a downstream effector of NCS-1, as novel partner proteins of ERK2. Taken together, our results imply non-redundant functions of ERK1 and ERK2 in mast cells and implicate NCS-1 and PΙ4Κβ as regulators of ERK2 trafficking.

  5. 5

    المصدر: Blood. 109:3385-3392

    الوصف: The secretory granules (SGs) of secretory cells of the hematopoietic lineage, such as the mast cells, are lysosome-related organelles whose membrane proteins travel through the plasma membrane and the endocytic system. Therefore, a mechanism must exist to prevent proteins destined to recycling or to the trans-Golgi network (TGN) from reaching the SGs. We now show that synaptotagmin (Syt) IX, a Syt homologue that is required for recycling from the endocytic recycling compartment (ERC) in rat basophilic leukemia (RBL-2H3) cultured mast cells, is involved in segregating recycling proteins from the SGs. By using as a marker the recycling protein TGN38, which cycles between the TGN, plasma membrane, and the ERC, we show that knock-down of Syt IX results in mistargeting of HA-tagged TGN38 to the SGs. We further demonstrate that Syt IX binds directly the small GTPase ARF1 and associates with the clathrin adaptor complex AP-1. These results therefore implicate Syt IX as an essential factor for the correct sorting of SGs proteins. Moreover, they place Syt IX as part of the machinery that is involved in the formation of transport carriers that mediate SGs protein sorting.

  6. 6

    المصدر: Journal of Cell Science. 118:1363-1372

    الوصف: We have examined the trafficking of synaptotagmin (Syt) I and II in the mast cell line rat basophilic leukemia (RBL-2H3). We demonstrate that both Syt I and Syt II travel through the plasma membrane and require endocytosis to reach their final intracellular localization. However, N- or C-terminal tagging of Syt II, but not of Syt I, prevents its internalization, trapping the tagged protein at the plasma membrane. Furthermore, a chimeric protein comprising a tagged luminal domain of Syt II fused with the remaining domains of Syt I also localizes to the plasma membrane, whereas a chimera consisting of tagged luminal domain of Syt I fused with Syt II colocalizes with Syt I on secretory granules. We also show that endocytosis of both Syt I and Syt II is strictly dependent on O-glycosylation processing, whereby O-glycosylation mutants of either protein fail to internalize and remain at the plasma membrane. Our results indicate that the luminal domains of Syt I and Syt II govern their internalization capacity from the plasma membrane and identify O-glycosylation as playing a crucial role in Syt trafficking in non-neuronal secretory cells.

  7. 7

    المصدر: Journal of Cell Science. 116:4307-4318

    الوصف: The pericentriolar endocytic recycling compartment (ERC) is involved in receptor and lipid recycling as well as in the delivery of internalized cargo from early endosomes to the trans Golgi network (TGN). We show that synaptotagmin (Syt) IX, a member of the Syt family of proteins, localizes to the ERC and is required for export from the ERC to the cell surface. We demonstrate that rat basophilic leukemia (RBL-2H3) mast cells endogenously express Syt IX mRNA and protein. Localization studies employing fractionation on linear sucrose gradients combined with confocal microscopy by indirect immunofluorescence or stable expression of a Syt IX-green fluorescent fusion protein demonstrate that Syt IX colocalizes with internalized transferrin (Tfn) and with Rab 11 at the perinuclear ERC. Syt IX also colocalizes with tubulin at the microtubules organizing center (MTOC) and remains associated with tubulin clusters formed in taxol-treated cells. Moreover, Syt IX coimmunoprecipitates with tubulin from intact RBL cells, and chimeric fusion proteins comprising either the C2A or the C2B domain of Syt IX are able to pull down tubulin from RBL cell lysates. To study the functional role of Syt IX, we have stably transfected RBL cells with Syt IX sense or antisense cDNA and monitored the routes of Tfn internalization and recycling in cells that overexpress (RBL-Syt IX+) or display substantially reduced (

  8. 8

    المصدر: Journal of Cell Science. 116:145-154

    الوصف: Early endosomes and a perinuclear, Rab-11-positive compartment have been implicated in the recycling of internalized receptors. In this study, we show that synaptotagmin III (Syt III), a member of the Syt family of proteins, is required for the formation and delivery of cargo to the perinuclear endocytic recycling compartment (ERC). We demonstrate that rat basophilic leukemia(RBL-2H3) mast cells endogenously express Syt III, and >70% of this protein colocalizes with early endosomal markers, such as EEA1, annexin II and syntaxin 7, and the remaining protein colocalizes with secretory granule (SG)markers such as β-hexosaminidase, histamine and serotonin. To study the functional role of Syt III, we stably transfected RBL cells with Syt III antisense cDNA and monitored the route of transferrin (Tfn) internalization in cells that displayed substantially reduced (

  9. 9

    المصدر: The Journal of Experimental Medicine

    الوصف: Synaptotagmins (Syts) I and II are believed to act as Ca2+ sensors in the control of neurotransmission. Here we demonstrate that mast cells express Syt II in their lysosomal fraction. We further show that activation of mast cells by either aggregation of FcεRI or by Ca2+ ionophores results in exocytosis of lysosomes, in addition to the well documented exocytosis of their secretory granules. Syt II directly regulates lysosomal exocytosis, whereby overexpression of Syt II inhibited Ca2+-triggered release of the lysosomal processed form of cathepsin D, whereas suppression of Syt II expression markedly potentiated this release. These findings provide evidence for a novel function of Syt II in negatively regulating Ca2+-triggered exocytosis of lysosomes, and suggest that Syt II–regulated secretion from lysosomes may play an important role in mast cell biology.

  10. 10

    المصدر: European Journal of Biochemistry. 209:81-88

    الوصف: Lapine synovial fibroblasts produce prostaglandin E2 (PGE2) and neutral metalloproteinases in response to phorbol 12-myristate 13-acetate (PMA), human recombinant interleukin-1 (hrIL-1) and, in an autocrine fashion, in response to partially purified preparations of their own cytokines known as cell-activating factors (CAF). Here we have examined the possible role of protein kinase C (PKC) in these responses. Whereas the 80-kDa substrate for PKC could not be detected in synovial fibroblasts, these cells contained a 35-kDa protein which fulfilled the criteria for qualifying as a specific substrate of PKC. Translocation assays based upon phosphorylation of the 35-kDa protein and Western blotting techniques allowed the movement of PKC from the cytosolic to the particulate fraction in response to PMA and CAF to be detected but not in response to 4 alpha-PMA or hrIL-1. Inhibitors of PKC suppressed synovial activation by PMA, partially blocked activation by CAF but had no effect on activation by hrIL-1. There thus appear to be PKC-dependent and PKC-independent routes to synovial cell activation. Our data suggest that IL-1 uses the latter, while CAF contains cytokines which utilize both routes.