يعرض 1 - 10 نتائج من 1,379 نتيجة بحث عن '"Veenhof, R."', وقت الاستعلام: 1.38s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Pfeiffer, D., Brunbauer, F., Cristiglio, V., Hall-Wilton, R., Lupberger, M., Markó, M., Muller, H., Oksanen, E., Oliveri, E., Ropelewski, L., Rusu, A., Samarati, J., Scharenberg, L., van Stenis, M., Thuiner, P., Veenhof, R.

    الوصف: The European Spallation Source (ESS) in Lund, Sweden will become the world's most powerful thermal neutron source. The Macromolecular Diffractometer (NMX) at the ESS requires three 51.2 × 51.2 cm2 detectors with reasonable detection efficiency, sub-mm spatial resolution, a narrow point-spread function (PSF), and good time resolution. This work presents measurements with the improved version of the NMX detector prototype consisting of a Triple-GEM (Gas Electron Multiplier) detector with a natural Gd converter and a low material budget readout. The detector was successfully tested at the neutron reactor of the Budapest Neutron Centre (BNC) and the D16 instrument at the Institut Laue-Langevin (ILL) in Grenoble. The measurements with Cadmium and Gadolinium masks in Budapest demonstrate that the point-spread function of the detector lacks long tails that could impede the measurement of diffraction spot intensities. On the D16 instrument at ILL, diffraction spots from Triose phosphate isomerase w/ 2-phosphoglycolate (PGA) inhibitor were measured both in the MILAND Helium-3 detector and the Gd-GEM. The comparison between the two detectors shows a similar point-spread function in both detectors, and the expected efficiency ratio compared to the Helium-3 detector. Both measurements together thus give good indications that the Gd-GEM detector fits the requirements for the NMX instrument at ESS.

    العلاقة: volume:18; issue:04; firstpage:04023; journal:JOURNAL OF INSTRUMENTATION; https://hdl.handle.net/11582/337927Test; https://iopscience.iop.org/article/10.1088/1748-0221/18/04/P04023Test

  2. 2
    دورية أكاديمية

    المساهمون: Helsinki Institute of Physics

    الوصف: We present the Migdal In Galactic Dark mAtter expLoration (MIGDAL) experiment aiming at the unambiguous observation and study of the so-called Migdal effect induced by fast-neutron scattering. It is hoped that this elusive atomic process can be exploited to enhance the reach of direct dark matter search experiments to lower masses, but it is still lacking experimental confirmation. Our goal is to detect the predicted atomic electron emission which is thought to accompany nuclear scattering with low, but calculable, probability, by deploying an Optical Time Projection Chamber filled with a low-pressure gas based on CF. Initially, pure CF will be used, and then in mixtures containing other elements employed by leading dark matter search technologies — including noble species, plus Si and Ge. High resolution track images generated by a Gas Electron Multiplier stack, together with timing information from scintillation and ionisation readout, will be used for 3D reconstruction of the characteristic event topology expected for this process — an arrangement of two tracks sharing a common vertex, with one belonging to a Migdal electron and the other to a nuclear recoil. Different energy-loss rate distributions along both tracks will be used as a powerful discrimination tool against background events. In this article we present the design of the experiment, informed by extensive particle and track simulations and detailed estimations of signal and background rates. In pure CF we expect to observe 8.9 (29.3) Migdal events per calendar day of exposure to an intense D–D (D–T) neutron generator beam at the NILE facility located at the Rutherford Appleton Laboratory (UK). With our nominal assumptions, 5 median discovery significance can be achieved in under one day with either generator. ; Peer reviewed

    وصف الملف: application/pdf

    العلاقة: Araújo , H M , Balashov , S N , Brunbauer , F M , Borg , J E , Cazzaniga , C , Frost , C D , Garcia , F , Kaboth , A C , Kastriotou , M , Katsioulas , I , Khazov , A , Kraus , H , Kudryavtsev , V A , Lilley , S , Lindote , A , Loomba , D , Lopes , M I , Lopez Asamar , E , Luna Dapica , P , Majewski , P A , Marley , T , McCabe , C , Mills , A F , Nakhostin , M , Neep , T , Neves , F , Nikolopoulos , K , Oliveri , E , Ropelewski , L , Tilly , E , Solovov , V N , Sumner , T J , Tarrant , J , Turnley , R , van der Grinten , M G D & Veenhof , R 2023 , ' The MIGDAL experiment : Measuring a rare atomic process to aid the search for dark matter ' , Astroparticle Physics , vol. 151 , 102853 . https://doi.org/10.1016/j.astropartphys.2023.102853Test; ORCID: /0000-0002-4023-7964/work/134439993; 85154062173; 6f71976f-be81-4e32-9d12-d09c716adf9d; http://hdl.handle.net/10138/357584Test; 000994021700001

  3. 3
    دورية أكاديمية

    المساهمون: Helsinki Institute of Physics

    الوصف: Timing information in current and future accelerator facilities is important for resolving objects (particle tracks, showers, etc.) in extreme large particles multiplicities on the detection systems. The PICOSEC Micromegas detector has demonstrated the ability to time 150 GeV muons with a sub-25 ps precision. Driven by detailed simulation studies and a phenomenological model which describes stochastically the dynamics of the signal formation, new PICOSEC designs were developed that significantly improve the timing performance of the detector. PICOSEC prototypes with reduced drift gap size (∼119 µm) achieved a resolution of 45 ps in timing single photons in laser beam tests (in comparison to 76 ps of the standard PICOSEC detector). Towards large area detectors, multi-pad PICOSEC prototypes with segmented anodes has been developed and studied. Extensive tests in particle beams revealed that the multi-pad PICOSEC technology provides also very precise timing, even when the induced signal is shared among several neighbouring pads. Furthermore, new signal processing algorithms have been developed, which can be applied during data acquisition and provide real time, precise timing. ; Peer reviewed

    وصف الملف: application/pdf

    العلاقة: Manthos , I , Aune , S , Bortfeldt , J , Brunbauer , F , David , C , Desforge , D , Fanourakis , G , Gallinaro , M , Garcia , F , Giomataris , I , Gustavsson , T , Iguaz , F J , Kallitsopoulou , A , Kebbiri , M , Kordas , K , Lampoudis , C , Legou , P , Lisowska , M , Liu , J , Lupberger , M , Maillard , O , Maniatis , I , Müller , H , Oliveri , E , Papaevangelou , T , Paraschou , K , Pomorski , M , Qi , B , Resnati , F , Ropelewski , L , Sampsonidis , D , Scharenberg , L , Schneider , T , Sohl , L , van Stenis , M , Tsiamis , A , Tsipolitis , Y , Tzamarias , S E , Utrobicic , A , Veenhof , R , Wang , X , White , S , Zhang , Z & Zhou , Y 2022 , ' Precise timing and recent advancements with segmented anode PICOSEC Micromegas prototypes ' , Journal of Instrumentation , vol. 17 , no. 10 , C10009 . https://doi.org/10.1088/1748-0221/17/10/C10009Test; ORCID: /0000-0002-4023-7964/work/122643917; 85140765097; 53ee4850-3e31-4c15-9a37-ccf4642dd204; http://hdl.handle.net/10138/566084Test; 000896176600007

  4. 4
    دورية أكاديمية

    المساهمون: Helsinki Institute of Physics

    مصطلحات موضوعية: 114 Physical sciences

    الوصف: The PICOSEC Micromegas detector is a precise timing gaseous detector based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplifying structure. First single-pad prototypes demonstrated a time resolution below = 25 ps, however, to make the concept appropriate to physics applications, several developments are required. The objective of this work was to achieve an equivalent time resolution for a 10 × 10 cm2 area PICOSEC Micromegas detector. The prototype was designed, produced and tested in the laboratory and successfully operated with a 80 GeV/c muon beam. Preliminary results for this device equipped with a CsI photocathode demonstrated a time resolution below = 25 ps for all measured pads. The time resolution was reduced to be below = 18 ps by decreasing the drift gap to 180 μm and using dedicated RF amplifier cards as new electronics. The excellent timing performance of the single-channel proof of concept was not only transferred to the 100-channel prototype, but even improved, making the PICOSEC Micromegas detector more suitable for large-area experiments in need of detectors with high time resolutions. ; Peer reviewed

    وصف الملف: application/pdf

    العلاقة: Lisowska , M , Bortfeldt , J , Brunbauer , F , Fanourakis , G , Floethner , K J , Gallinaro , M , Garcia , F , Giomataris , I , Gustavsson , T , Iguaz , F J , Janssens , D , Kallitsopoulou , A , Kovacic , M , Legou , P , Liu , J , Lupberger , M , Maniatis , I , Meng , Y , Muller , H , Oliveri , E , Orlandini , G , Papaevangelou , T , Pomorski , M , Ropelewski , L , Sampsonidis , D , Scharenberg , L , Schneider , T , Sohl , L , van Stenis , M , Tsipolitis , Y , Tzamarias , S E , Utrobicic , A , Veenhof , R , Wang , X , White , S , Zhang , Z & Zhou , Y 2023 , ' Sub-25 ps timing measurements with 10 × 10 cm2 PICOSEC Micromegas detectors ' , Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment , vol. 1046 , 167687 . https://doi.org/10.1016/j.nima.2022.167687Test; ORCID: /0000-0002-4023-7964/work/131544695; 85141915473; a05c7f9e-2d58-4584-8815-254018ce58ef; http://hdl.handle.net/10138/356473Test; 001002123900001

  5. 5
    دورية أكاديمية

    المساهمون: Department of Applied Physics, Computational Electronic Structure Theory, CERN, Ludwig Maximilian University of Munich, University of Bonn, University of Helsinki, Aalto-yliopisto, Aalto University

    الوصف: Publisher Copyright: © 2023 The Author(s) ; The RD51 collaboration maintains a common infrastructure at CERN for its R & D activities, including two beam telescopes for test beam campaigns. Recently, one of the beam telescopes has been equipped and commissioned with new multi-channel and charge-sensitive front-end electronics based on the ATLAS/BNL VMM3a front-end ASIC and the RD51 Scalable Readout System (SRS). This allows to read out the detectors at high rates (up to the MHz regime) with electronics time resolutions of the order of 1 ns and the ability to handle different detector types and sizes, due to a larger dynamic range compared to the previous front-end electronics based on the APV25 ASIC. Having studied and improved the beam telescope's performance over the course of three test beam campaigns, the results are presented in this paper. ; Peer reviewed

    وصف الملف: 1-6; application/pdf

    العلاقة: Journal of Instrumentation; Volume 18, issue 5; Scharenberg, L, Bortfeldt, J, Brunbauer, F, Desch, K, Flöthner, K, Garcia, F, Janssens, D, Lisowska, M, Müller, H, Oliveri, E, Orlandini, G, Pfeiffer, D, Ropelewski, L, Samarati, J, Sorvisto, D, van Stenis, M & Veenhof, R 2023, ' Performance of the new RD51 VMM3a/SRS beam telescope — studying MPGDs simultaneously in energy, space and time at high rates ', Journal of Instrumentation, vol. 18, no. 5, C05017, pp. 1-6 . https://doi.org/10.1088/1748-0221/18/05/C05017Test; PURE UUID: 2f2b388b-c5f1-40ee-b311-73ece1a338c9; PURE ITEMURL: https://research.aalto.fi/en/publications/2f2b388b-c5f1-40ee-b311-73ece1a338c9Test; PURE LINK: http://www.scopus.com/inward/record.url?scp=85160356235&partnerID=8YFLogxKTest; PURE FILEURL: https://research.aalto.fi/files/120498964/Performance_of_the_new_RD51_VMM3a_SRS_beam_telescope_studying_MPGDs_simultaneously_in_energy_space_and_time_at_high_rates.pdfTest; https://aaltodoc.aalto.fi/handle/123456789/123323Test; URN:NBN:fi:aalto-202309065688

  6. 6
    دورية أكاديمية

    المساهمون: Australian Research Council, Seaweed solutions, University of Tasmania, Deakin University

    المصدر: Annals of Botany ; volume 133, issue 1, page 153-168 ; ISSN 0305-7364 1095-8290

    الوصف: Background and aims Kelp forests underpin temperate marine ecosystems but are declining due to ocean warming, causing loss of associated ecosystem services. Projections suggest significant future decline but often only consider the persistence of adult sporophytes. Kelps have a biphasic life cycle, and the haploid gametophyte can be more thermally tolerant than the sporophyte. Therefore, projections may be altered when considering the thermal tolerance of gametophytes. Methods We undertook thermal tolerance experiments to quantify the effect of temperature on gametophyte survival, relative growth rate (RGR) and sex ratio for three genetically distinct populations of Ecklonia radiata gametophytes from comparatively high, mid- and low latitudes (43°, 33° and 30°S). We then used these data to project the likely consequences of climate-induced thermal change on gametophyte persistence and performance across its eastern Australian range, using generalized additive and linear models. Key results All populations were adapted to local temperatures and their thermal maximum was 2–3 °C above current maximum in situ temperatures. The lowest latitude population was most thermally tolerant (~70 % survival up to 27 °C), while survival and RGR decreased beyond 25.5 and 20.5 °C for the mid- and low-latitude populations, respectively. Sex ratios were skewed towards females with increased temperature in the low- and high-latitude populations. Spatially explicit model projections under future ocean warming (2050-centred) revealed a minimal decline in survival (0–30 %) across populations, relative to present-day predictions. RGRs were also projected to decline minimally (0–2 % d−1). Conclusions Our results contrast with projections for the sporophyte stage of E. radiata, which suggest a 257-km range contraction concurrent with loss of the low-latitude population by 2100. Thermal adaptation in E. radiata gametophytes suggests this life stage is likely resilient to future ocean warming and is unlikely to be a bottleneck for ...

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    مؤتمر

    المساهمون: Institut Ruđer Bošković (IRB), Aristotle University of Thessaloniki, Ludwig Maximilian University Munich = Ludwig Maximilians Universität München (LMU), CERN Genève, Stony Brook University SUNY (SBU), State University of New York (SUNY), Institute of Nuclear and Particle Physics (INPAC), Shanghai Jiao Tong University Shanghai, Universität Bonn = University of Bonn, Laboratório de Instrumentačão e Física Experimental de Partículas (LIP), Helsinki Institute of Physics (HIP), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Thomas Jefferson National Accelerator Facility (Jefferson Lab), Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDYL), Institut Rayonnement Matière de Saclay (DRF) (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Université Paris-Saclay, Dynamique et Interactions en phase Condensée (DICO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Université Paris-Saclay-Institut Rayonnement Matière de Saclay (DRF) (IRAMIS), University of Zagreb, University of Science and Technology of China Hefei (USTC), Laboratoire Capteurs Diamant (CEA, LIST) (LCD (CEA, LIST)), Département Métrologie Instrumentation & Information (CEA, LIST) (DM2I (CEA, LIST)), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, National Technical University of Athens Athens (NTUA), EPR & D, CERN Strategic Programme on Technologies for Future Experiments, the RD51 collaboration, in the framework of RD51 common projects, the Cross-Disciplinary Program on Instrumentation and Detection of CEA, the French Alternative Energies andAtomic Energy Commission, the PHENIICS Doctoral School Program of Université Paris-Saclay, France, the Fundamental Research Funds for the Central Universities of China, the Program of National Natural Science Foundation of China (grant number 11935014), the Fundação para a Ciência e a Tecnologia (FCT), Portugal (CERN/FIS-PAR/0005/2021), the US CMS program under DOE contract No. DE-AC02-07CH11359, Weizmann Institute of Science, RD51 at CERN, RD51 collaboration, European Project: 665779,H2020,H2020-MSCA-COFUND-2014,COFUND-FP-CERN-2014(2015), European Project: 600382,EC:FP7:PEOPLE,FP7-PEOPLE-2012-COFUND,ENHANCED EUROTALENTS(2014)

    المصدر: MPGD 2022 - 7th International Conference on Micro Pattern Gaseous Detectors ; https://cea.hal.science/cea-04077382Test ; MPGD 2022 - 7th International Conference on Micro Pattern Gaseous Detectors, Weizmann Institute of Science; RD51 at CERN, Dec 2022, Rehovot, Israel ; https://www.weizmann.ac.il/conferences/MPGD2022Test/

    جغرافية الموضوع: Rehovot, Israel

    الوصف: International audience ; The PICOSEC Micromegas precise timing detector is based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplification structure. The first proof of concept single-channel small area prototype was able to achieve time resolution below 25 ps. One of the crucial aspects in the development of the precise timing gaseous detectors applicable in high-energy physics experiments is a modular design that enables large area coverage. The first 19-channel multi-pad prototype with an active area of approximately 10 cm2 suffered from degraded timing resolution due to the non-uniformity of the preamplification gap. A new 100 cm2 detector module with 100 channels based on a rigid hybrid ceramic/FR4 Micromegas board for improved drift gap uniformity was developed. Initial measurements with 80 GeV/c muons showed improvements in timing response over measured pads and a time resolution below 25 ps. More recent measurements with a new thinner drift gap detector module and newly developed RF pulse amplifiers show that the resolution can be enhanced to a level of 17 ps. This work will present the development of the detector from structural simulations, design, and beam test commissioning with a focus on the timing performance of a thinner drift gap detector module in combination with new electronics using an automated timing scan method.

    العلاقة: info:eu-repo/grantAgreement//665779/EU/COFUNDing of the CERN Fellowship Programme 2014/COFUND-FP-CERN-2014; info:eu-repo/grantAgreement/EC/FP7/600382/EU/Enhanced Eurotalents: a European programme for transnational mobility of experimented researchers managed by CEA/ENHANCED EUROTALENTS; cea-04077382; https://cea.hal.science/cea-04077382Test; https://cea.hal.science/cea-04077382/documentTest; https://cea.hal.science/cea-04077382/file/arXiv_AUtrobicic.pdfTest

  10. 10
    مؤتمر

    المساهمون: Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Aristotle University of Thessaloniki, Ludwig Maximilian University Munich = Ludwig Maximilians Universität München (LMU), CERN Genève, Stony Brook University SUNY (SBU), State University of New York (SUNY), Institute of Nuclear and Particle Physics (INPAC), Shanghai Jiao Tong University Shanghai, Laboratório de Instrumentačão e Física Experimental de Partículas (LIP), Helsinki Institute of Physics (HIP), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Thomas Jefferson National Accelerator Facility (Jefferson Lab), Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDYL), Institut Rayonnement Matière de Saclay (DRF) (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Université Paris-Saclay, Dynamique et Interactions en phase Condensée (DICO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Université Paris-Saclay-Institut Rayonnement Matière de Saclay (DRF) (IRAMIS), University of Zagreb, University of Science and Technology of China Hefei (USTC), Universität Bonn = University of Bonn, Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Laboratoire Capteurs Diamant (CEA, LIST) (LCD (CEA, LIST)), Département Métrologie Instrumentation & Information (CEA, LIST) (DM2I (CEA, LIST)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, National Technical University of Athens Athens (NTUA), Institut Ruđer Bošković (IRB), the Fundação para a Ciência e a Tecnologia (FCT), Portugal (CERN/FIS-PAR/0005/2021), the US CMS program under DOE contract No. DEAC02-07CH11359, Weizmann Institute of Science, European Project: 665779,H2020,H2020-MSCA-COFUND-2014,COFUND-FP-CERN-2014(2015), European Project: 600382,EC:FP7:PEOPLE,FP7-PEOPLE-2012-COFUND,ENHANCED EUROTALENTS(2014)

    المصدر: MPGD 2022 - 7 th International Conference on Micro-Pattern Gaseous Detectors ; https://hal.science/hal-04079376Test ; MPGD 2022 - 7 th International Conference on Micro-Pattern Gaseous Detectors, Weizmann Institute of Science, Dec 2022, Rehovot, Israel ; https://www.weizmann.ac.il/conferences/MPGD2022/homeTest

    جغرافية الموضوع: Rehovot, Israel

    الوصف: International audience ; The PICOSEC Micromegas (MM) detector is a precise timing gaseous detector consisting of a Cherenkov radiator combined with a photocathode and a MM amplifying structure. A 100-channel non-resistive PICOSEC MM prototype with 10x10 cm$^2$ active area equipped with a Cesium Iodide (CsI) photocathode demonstrated a time resolution below $\sigma$ =18 ps. The objective of this work is to improve the PICOSEC MM detector robustness aspects; i.e. integration of resistive MM and carbon-based photocathodes; while maintaining good time resolution. The PICOSEC MM prototypes have been tested in laboratory conditions and successfully characterised with 150 GeV/c muon beams at the CERN SPS H4 beam line. The excellent timing performance below $\sigma$ = 20 ps for an individual pad obtained with the 10x10 cm$^2$ area resistive PICOSEC MM of 20 M$\Omega$/sq showed no significant time resolution degradation as a result of adding a resistive layer. A single-pad prototype equipped with a 12 nm thick Boron Carbide (B$_4$C) photocathode presented a time resolution below $\sigma$ = 35 ps; opening up new possibilities for detectors with robust photocathodes. The results made the concept more suitable for the experiments in need of robust detectors with good time resolution.

    العلاقة: info:eu-repo/semantics/altIdentifier/arxiv/2303.18141; info:eu-repo/grantAgreement//665779/EU/COFUNDing of the CERN Fellowship Programme 2014/COFUND-FP-CERN-2014; info:eu-repo/grantAgreement/EC/FP7/600382/EU/Enhanced Eurotalents: a European programme for transnational mobility of experimented researchers managed by CEA/ENHANCED EUROTALENTS; hal-04079376; https://hal.science/hal-04079376Test; https://hal.science/hal-04079376/documentTest; https://hal.science/hal-04079376/file/arXiv_MLisowska.pdfTest; ARXIV: 2303.18141